Divergence or "when the limit is infinite".

In the theory of sequences we say that a sequence $\left\{a_{n}\right\}_{n \geq 1}$ diverges if it fails to converge. There are a number of ways it could fail to converge, e.g. it could oscillate, i.e. $a_{n}=(-1)^{n}, n \geq 1$, or it could be unbounded, i.e. $a_{n}=n, n \geq 1$.

For certain unbounded functions there is a type of limit that can still be defined. The first definition below encapsulates the situation in which given a function defined on a deleted neighbourhood of $a \in \mathbb{R}$, and given any real number K, which we might think of as positive and large, there is some deleted neighbourhood of a on which the function is greater than K. This can be repeated for each and every positive large K. Presumably the larger the K the smaller the deleted neighbourhood. Then, if $\lim _{x \rightarrow a} f(x)$ is to be assigned a value connected in some way with the values taken by the function on deleted neighbourhoods of a, this value should be larger than every positive large K. There is no such possible real value! Instead we assign the symbol $+\infty$ to $\lim _{x \rightarrow a} f(x)$.

Definition 1.2.1 1. Let $f: A \rightarrow \mathbb{R}$ be a function whose domain contains a deleted neighbourhood of $a \in \mathbb{R}$. We write

$$
\lim _{x \rightarrow a} f(x)=+\infty
$$

or say

$$
" f(x) \text { tends to }+\infty \text { as } x \text { tends to } a "
$$

if, and only if, for all for all $K>0$ there exists $\delta>0$ such that if $0<$ $|x-a|<\delta$ then $f(x)>K$. That is:

$$
\begin{equation*}
\forall K>0, \exists \delta>0, \forall x \in A, 0<|x-a|<\delta \Longrightarrow f(x)>K \tag{1}
\end{equation*}
$$

2. Similarly, we write

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

or say

$$
" f(x) \text { tends to }-\infty \text { as } x \text { tends to } a "
$$

if, and only if, for all for all $K<0$ there exists $\delta>0$ such that if $0<$ $|x-a|<\delta$ then $f(x)<K$. That is:

$$
\forall K<0, \exists \delta>0, \forall x \in A, 0<|x-a|<\delta \Longrightarrow f(x)<K .
$$

Note that here we have $f(x)<K<0$ and so, because the numbers are negative, $|f(x)|>|K|$, i.e. $f(x)$ will be larger, in magnitude, than K !

As an illustration of the $K-\delta$ definition of the limit being $+\infty$ we have

Example 1.2.2 Verify the $K-\delta$ definition to show that

$$
\lim _{x \rightarrow 1} \frac{x}{(x-1)^{2}}=+\infty
$$

Graphically, this function is very much like that used in the figure above:

Solution Rough Work Assume $0<|x-1|<\delta$ with $\delta>0$ to be chosen.
If we demanded that $\delta \leq 1$ then $0<|x-1|<\delta$ would imply $0<x<2$, which gives

$$
\frac{x}{(x-1)^{2}}>\frac{0}{(x-1)^{2}}=0,
$$

which is of no use. Thus we instead demand that δ be less than a number strictly less than 1 . The 'simplest' positive number strictly less than 1 is $1 / 2$.

If we demand that $\delta \leq 1 / 2$ then $0<|x-1|<\delta \leq 1 / 2$ which opens out as $-1 / 2 \leq x-1 \leq 1 / 2$, i.e. $1 / 2<x<3 / 2$. Thus x is no smaller than $1 / 2$ in which case

$$
\frac{x}{(x-1)^{2}}>\frac{1}{2(x-1)^{2}} .
$$

Also, $0<|x-1|<\delta$ implies $(x-1)^{2}<\delta^{2}$ and so

$$
\frac{x}{(x-1)^{2}}>\frac{1}{2(x-1)^{2}} \geq \frac{1}{2 \delta^{2}} .
$$

We demand this is $\geq K$, which rearranges as $\delta \leq 1 / \sqrt{2 K}$. We put these two demands on δ together as

$$
\delta=\min \left(\frac{1}{2}, \frac{1}{\sqrt{2 K}}\right) .
$$

End of rough Work.
Solution left to students
Note To show $\lim _{x \rightarrow a} f(x)=L$, with L finite you have to show that $|f(x)-L|<$ ε. This is normally done by finding a simpler, upper bound for $|f(x)-L|$ and then demanding this upper bound is $<\varepsilon$.

To show $\lim _{x \rightarrow a} f(x)=+\infty$ you have to show that $f(x)>K$. This is normally done by finding an simpler, lower bound for $f(x)$ and then demanding this lower bound is $>K$.

To show $\lim _{x \rightarrow a} f(x)=-\infty$ you have to show that $f(x)<K$. This is normally done by finding an simpler, upper bound for $f(x)$ and then demanding this upper bound is $<K$.

Advice for the exams It is necessary to be able to deal with inequalities concerning negative numbers. For example

$$
\begin{aligned}
& x<y<0 \quad \text { implies } \quad|x|>|y| \\
& x<y \text { implies }-x>-y \\
& x<y \text { and } u<0 \quad \text { imply } u x>u y .
\end{aligned}
$$

And, as long as x and y are of the same sign, the direction of the inequality is reversed on inverting, i.e.

$$
\text { if either } x>y>0 \text { or } 0>x>y \text { then } \frac{1}{y}>\frac{1}{x} \text {. }
$$

For the function illustrated in the following figure it would appear that, as x tends to $+\infty$, the function $f(x)$ also tend to $+\infty$. And that as x tends to 1 from above, i.e. $x \rightarrow 1+$, that $f(x)$ tends to $+\infty$.

It should not be hard for the student to supply definitions for

$$
\lim _{x \rightarrow+\infty} f(x)=+\infty \text { or }-\infty, \quad \text { and } \quad \lim _{x \rightarrow a^{+}} f(x)=+\infty \text { or }-\infty .
$$

Further, the student should be able to also define

$$
\lim _{x \rightarrow-\infty} f(x)=+\infty \text { or }-\infty \quad \text { and } \quad \lim _{x \rightarrow a^{-}} f(x)=+\infty \text { or }-\infty .
$$

In fact you will be asked to do just this in a question on the Problem Sheets.
Note In none of the cases above do we say that the limit exists. If we say " $\lim f(x)$ exists" we are implicitly assuming that it is finite. This is because, as in the definitions of limits at infinity, the symbols $+\infty$ and $-\infty$ are not real numbers. They are used simply as shorthand. To say $\lim _{x \rightarrow a} f(x)=+\infty$ is to say that f satisfies (1), and there is no use of the symbol $+\infty$ in that definition.

A slightly more difficult example discussed in the Tutorial.
Example 1.2.3 Verify the $K-\delta$ definition to show that

$$
\lim _{x \rightarrow-1} \frac{x}{(x+1)^{2}}=-\infty
$$

Hint Recall that given $K<0$ we want to find x for which $f(x)<K$. We might attempt this by finding a simpler upper bound for $f(x)$ and then demanding this upper bound is $<K$.

Graphically:

Solution Rough Work Assume $0<|x-(-1)|<\delta$ with $\delta>0$ to be chosen.
If $\delta \leq 1$ then $0<|x+1|<\delta \leq 1$ would imply $-2<x<0$, which gives the upper bound

$$
\frac{x}{(x+1)^{2}}<\frac{0}{(x+1)^{2}}=0 .
$$

There is no way of demanding this is $<K<0$. Instead demand that $\delta \leq 1 / 2$. Then

$$
0<|x+1|<1 / 2 \Longrightarrow-1 / 2<x+1<1 / 2 \Longrightarrow-3 / 2<x<-1 / 2
$$

Use the upper bound on x to give

$$
\frac{x}{(x+1)^{2}}<-\frac{1}{2(x+1)^{2}} .
$$

Then $0<|x+1|<\delta$ implies $0<(x+1)^{2}<\delta^{2}$ so

$$
\frac{1}{(x+1)^{2}}>\frac{1}{\delta^{2}} \quad \text { and } \quad-\frac{1}{2(x+1)^{2}}<-\frac{1}{2 \delta^{2}}
$$

We now demand this is $<K$. This rearranges as

$$
\delta \leq \sqrt{-\frac{1}{2 K}}
$$

Remember that K is negative so we are not taking the square root of a negative number. So $\delta=\min (1 / 2, \sqrt{-1 / 2 K})$ will suffice.
End of Rough Work

Proof Let $K<0$ be given. Choose $\delta=\min (1 / 2, \sqrt{-1 / 2 K})$. Assume $0<|x+1|<\delta$. Then first $|x+1|<\delta \leq 1 / 2$ implies $x<-1 / 2$.

Secondly

$$
\begin{equation*}
|x+1|<\delta \leq \sqrt{-\frac{1}{2 K}} \Longrightarrow(x+1)^{2} \leq-\frac{1}{2 K} \Longrightarrow \frac{1}{(x+1)^{2}} \geq-2 K \tag{2}
\end{equation*}
$$

Combine these inequalities as

$$
\begin{equation*}
\frac{x}{(x+1)^{2}}<\left(-\frac{1}{2}\right)\left(\frac{1}{(x+1)^{2}}\right) \leq\left(-\frac{1}{2}\right)(-2 K), \tag{3}
\end{equation*}
$$

where the direction of the inequality in (2) has changed in (3) because of being multiplied by the negative $-1 / 2$. Hence

$$
\frac{x}{(x+1)^{2}}<K
$$

Thus we have verified the $K-\delta$ definition of $\lim _{x \rightarrow-1} x /(x+1)^{2}=-\infty$.

Limit Rules

An important result says that if the limit of $f(x)$ as $x \rightarrow a$ exists and is non-zero then, for x sufficiently close to a, the values of the function $f(x)$ cannot be too large nor too small.

Lemma 1.2.4 If $\lim _{x \rightarrow a} f(x)=L$ exists then there exists $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta \quad \text { then } \quad \begin{cases}\frac{L}{2}<f(x)<\frac{3 L}{2} & \text { if } L>0 \\ \frac{3 L}{2}<f(x)<\frac{L}{2} & \text { if } L<0 \\ |f(x)|<|L|+1 & \text { for all } L\end{cases}
$$

The first two cases can be summed up as

$$
\frac{|L|}{2}<|f(x)|<\frac{3|L|}{2}
$$

if $L \neq 0$. A deduction from this is that if the limit at a is non-zero then there exists a deleted neighbourhood of a in which f is non-zero.

Proof Assume $L>0$. Choose $\varepsilon=L / 2>0$ in the $\varepsilon-\delta$ definition of $\lim _{x \rightarrow a} f(x)=L$ to find $\delta>0$ such that

$$
\begin{aligned}
0<|x-a|<\delta & \Longrightarrow|f(x)-L|<\frac{L}{2} \\
& \Longrightarrow-\frac{L}{2}<f(x)-L<\frac{L}{2} \\
& \Longrightarrow \frac{L}{2}<f(x)<\frac{3 L}{2} .
\end{aligned}
$$

Assume $L<0$. Choose $\varepsilon=-L / 2>0$ in the $\varepsilon-\delta$ definition of $\lim _{x \rightarrow a} f(x)=$ L to find $\delta>0$ such that

$$
\begin{aligned}
0<|x-a|<\delta & \Longrightarrow|f(x)-L|<-\frac{L}{2} \\
& \Longrightarrow-\left(-\frac{L}{2}\right)<f(x)-L<-\frac{L}{2} \\
& \Longrightarrow \frac{3 L}{2}<f(x)<\frac{L}{2}
\end{aligned}
$$

Given any L choose $\varepsilon=1$ in the $\varepsilon-\delta$ definition of $\lim _{x \rightarrow a} f(x)=L$ to find $\delta>0$ such that if $0<|x-a|<\delta$ then $|f(x)-L|<1$. Then, by the triangle inequality,

$$
|f(x)|=|(f(x)-L)+L| \leq|f(x)-L|+|L|<1+|L| .
$$

Theorem 1.2.5 Suppose that f and g are both defined on some deleted neighbourhood of a and that both $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$ exist. Then:
Sum Rule: the limit of the sum exists and equals the sum of the limits:

$$
\lim _{x \rightarrow a}[f(x)+g(x)]=L+M
$$

Product Rule: the limit of the product exists and equals the product of the limits:

$$
\lim _{x \rightarrow a} f(x) g(x)=L M
$$

Quotient Rule: the limit of the quotient exists and equals the quotient of the limits:

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L}{M}, \quad \text { provided that } M \neq 0
$$

Proof of the Sum Rule is left to student.
Proof of the Product Rule. Consider

$$
\begin{aligned}
&|f(x) g(x)-L M|=|f(x) g(x)-L g(x)+L g(x)-L M|, \\
& \text { "adding in zero", } \\
& \leq|f(x) g(x)-L g(x)|+|L g(x)-L M|
\end{aligned}
$$

by the triangle inequality,

$$
\begin{equation*}
=|f(x)-L||g(x)|+|L||g(x)-M| \tag{4}
\end{equation*}
$$

Let $\varepsilon>0$ be given. From the Lemma above $\lim _{x \rightarrow a} g(x)=M$ means there exists $\delta_{1}>0$ such that

$$
\begin{equation*}
0<|x-a|<\delta_{1} \Longrightarrow|g(x)|<|M|+1 \tag{5}
\end{equation*}
$$

From the definition of $\lim _{x \rightarrow a} f(x)=L$ we find that there exists $\delta_{2}>0$ such that, if $0<|x-a|<\delta_{2}$ then

$$
\begin{equation*}
|f(x)-L|<\frac{\varepsilon}{2(|M|+1)} \tag{6}
\end{equation*}
$$

Finally, the definition of $\lim _{x \rightarrow a} g(x)=M$ means there exists $\delta_{3}>0$ such that, if $0<|x-a|<\delta_{3}$ then

$$
\begin{equation*}
|g(x)-M|<\frac{\varepsilon}{2(|L|+1)}, \tag{7}
\end{equation*}
$$

(where we have put a " +1 " in the denominator, $2(|L|+1$), in case $L=0$).
Choose $\delta=\min \left(\delta_{1}, \delta_{2}, \delta_{3}\right)>0$. Assume $0<|x-a|<\delta$. For such x all the three bounds (5), (7) and (6) hold. Then, returning to (4),

$$
\begin{aligned}
|f(x) g(x)-L M| & \leq|f(x)-L||g(x)|+|L||g(x)-M|, \\
& <\underbrace{\frac{\varepsilon}{2(|M|+1)}}_{\text {by }(6)}(|M|+1)+|L| \underbrace{\frac{\varepsilon}{2(|L|+1)}}_{\text {by }(5)} \\
& =(\frac{1}{2}+\frac{1}{2} \times \underbrace{\frac{|L|}{||L|+1)}}_{<1}) \varepsilon<\varepsilon .
\end{aligned}
$$

Thus we have verified the definition that $\lim _{x \rightarrow a} f(x) g(x)=L M$.

Proof of the Quotient Rule for limits.

Assume $\lim _{x \rightarrow a} g(x)=M$ and $M \neq 0$.
By the Lemma 1.2.4 we also have $\delta_{1}>0$ such that if $0<|x-a|<\delta_{1}$ then

$$
\begin{equation*}
|g(x)|>\frac{|M|}{2} . \tag{8}
\end{equation*}
$$

In particular $g(x) \neq 0$ and so, for such x we can consider

$$
\begin{equation*}
\left|\frac{1}{g(x)}-\frac{1}{M}\right|=\frac{1}{|g(x)|} \frac{|g(x)-M|}{M}<\underbrace{\frac{2}{|M|}}_{\text {by }(8)} \times \frac{|g(x)-M|}{M} . \tag{9}
\end{equation*}
$$

Let $\varepsilon>0$ be given. From the definition of $\lim _{x \rightarrow a} g(x)=M$ there exists $\delta_{2}>0$ such that if $0<|x-a|<\delta_{2}$ then

$$
\begin{equation*}
|g(x)-M|<\frac{\varepsilon|M|^{2}}{2} . \tag{10}
\end{equation*}
$$

Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$ and assume $0<|x-a|<\delta$. For such x both (10) and (9) hold and we have

$$
\left|\frac{1}{g(x)}-\frac{1}{M}\right| \leq \frac{2}{M^{2}}|g(x)-M|<\frac{2}{M^{2}} \times \underbrace{\left(\frac{|M|^{2} \varepsilon}{2}\right)}_{\text {by }(10)}=\varepsilon
$$

Hence we have verified the definition of $\lim _{x \rightarrow a} 1 / g(x)=1 / M$
I leave it to the Student to use the Product Rule to deduce

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L}{M}
$$

Advice for the exam. If asked to evaluate a limit by verifying the $\varepsilon-\delta$ definition, do not use the limit laws.

If asked to evaluate a limit without restriction on the method and you use a limit law tell me the rule being a used.

